8_Humanwareに係る信頼性管理

―はじめに-

航空機の事故発生率は航空機、エンジン、その他の装備品などのHardwareの信頼性向上(設計の高度化、材料の進歩、Hardware に関わる信頼性管理技術の進歩、など)と法規制の高度化によって飛躍的に低下してきました。しかし1970年代半ばを境に事故発生率は横ばいとなり、このまま放置すると経済の急成長に伴う運航機数の増加に比例して事故数の増加は避けられなくなることが予見されました。そこで、事故の原因として相対的に大きな要素を占めるようになった人間が犯すミス(以下“ヒューマンエラー”/Human Error と呼びます)を抑止する為に官民一体となった取り組みが始まりました
航空機を運航するという事は、航空機という高度な機械システムを、人間が維持管理(整備など)を行い、人間が操縦することと言い換えることができます。ここでは、この高度な機械システムに人間がかかわる部分の信頼性管理の在り方を総称して“Humanware に係る信頼性管理”と呼ぶことに致します
この取り組みが始まってから40年以上が経過しておりますが、現在までの足取りについて以下に説明をしたいと思います

-Humanware に係る信頼性管理システムの歴史-

戦後、物作り日本が高度成長を続けている時期、生産現場では不良品が発生する主な原因となるミス作業を減らすために“ZD(Zero Defect)運動”が導入されました。その後、更に製品品質の向上と生産性の向上とを同時に達成するために、現場での自発的改善活動に重きを置いた“小集団活動”が盛んになり、目覚しい成果を挙げました
航空ビジネスの分野でも現場を中心とする多くの部門にいち早くこの小集団活動が導入され、ミス作業の防止による安全性の向上生産性の向上に大きく寄与することになりました。

その後、高品質の製品を生み出し続ける日本に倣って欧米先進国の優良企業が、それまで現場中心であった小集団活動に目を付け、これを現場以外の部門にも広げ、更にこの活動に経営が積極的に関与するという、謂わば“経営改善活動”として進化を遂げるに至りました。“TQC(Total Quality Control)活動”、“QMS(Quality Management System)活動”、“シックス・シグマ(6σ)活動等は、個々に手法の違いはあれ全てこの範疇に入る取り組みと考えられます
シックス・シグマ(6σ:注)活動については、米国の電子機器・通信機メーカーであるモトローラ社が1980年代に初めて開発致しましたが、これをジェネラル・エレクトリック社が全社的に導入し成果を上げたことから、日本航空の整備部門などにも取り入れられることとなりました
(注)シックスシグマのシグマ(σとは、統計用語で標準偏差(バラツキの度合い)を意味します。シックスシグマ活動とは、品質のバラツキを標準偏差で測定し、分布の平均からプラス・マイナス6シグマ(σ)を上限・下限の管理限界として不良品の率を減らしていく経営手法です。シグマの数が大きくなるほど(6σ > σ )指数関数的にバラツキが減少してゆきます

また、技術的に高度な製品を生み出す企業は、国境を超えた “Supply Chain(連鎖的な供給体制:必要なタイミングで必要な部品を供給する仕組み、例えばトヨタの“かんばん方式”など)”を築くことが一般的となり、結果として末端の部品供給を担う企業に対しても高度なレベルの品質管理を導入する必要性に迫られました。こうした環境の中で生まれたのが“ISO(International Organization for Standardization:国際標準化機構)”という組織です。ISOでは国際的に共通な基準を設定すると共に、この基準を満たしているかどうかを認証する中立的な専門機関を設ける仕組を構築しました。そして部品供給を担う企業に対しても、ISOの認証を受けることを求める様になりました。

ISOが要求する基準とは、極言すれば“業務を行う為のルールの可視化”、“PDCA(Plan Do Check Action)サイクルの徹底”、“記録の保持”であるということができます。航空ビジネスの分野でも、国際分業が定着した航空機、エンジン、その他の装備品の製造の受託を行う為には、ISOの認証(ISO9000)を受けることが必須となっています。また、航空機の保守整備の分野に関しても、基準やマニュアルの整備が急速に進み、ISO基準と実質的に同等な業務の仕組みが無ければ自律的で効率的な業務が実施できない状況になっています(“6_認定事業場制度”参照)

-ヒューマンエラーを抑止するための規制-

ヒューマンエラーに焦点を当て、これを科学的に分析して極限まで減らす試みは、ミスが死に直結する航空宇宙の分野が先行していたことは言うまでもありません
航空宇宙の分野では軽量化が経済性に直結するため、Hardware を設計する際に基準となる安全率が低く(一般に1.5程度)設定されています。従ってパイロットの操縦室における操作や、機体の構造やシステムに対する整備作業において、ヒューマンエラーを抑止するために極めて厳格なルールが定められました。一方、単にルール厳守という掛け声だけではミスを抑止することは困難であることが分り、人間工学行動科学の側面から研究を進め、操作ミスや判断ミス、手順や作業のミス、等を防ぐための設計手法の開発や教育・訓練システムが考案され、積極的に導入されるようになってきました

1.パイロットのヒューマンエラーを抑止する為の操縦室設計に係る基準
操縦室の設計に関するヒューマンエラーを防止する為の基準は航空法施行規則・附属書に具体的に規定されています
先行する米国においては法規制全般に係るヒューマンファクターの方針(FAA Order 9550.8A)を受け、極めて具体的、且つ詳細にわたるガイド“Human Factors Design Guide”が設定されています。また同時に、米軍の規格(MILSTD1472F)も並行して存在しており、米国での航空機の設計・製造の審査の際はこれらの基準が厳格に適用されています。また、外国製の航空機に米国の耐空証明を付与する場合でもこの基準が適用されており、日本の民間航空機の設計・製造に当たっては、欧米先進国への輸出を前提とする場合、実質的に世界で最も厳しい米国の基準がデファクトスタンダードとなっています

2.パイロットのヒューマンエラーを抑止するための訓練基準
航空分野において日米欧は、ほぼ“CRM/Crew Resource(注) Management”訓練に統一されています。パイロットとしての資格取得や資格維持の為の必須要件としてこのCRM訓練が規制の中に明確に位置付けられています
米国の規制では、CRM訓練で実施すべき標準的な内容を“AC120-51e”で提示しておりますが、この通り実施する義務は課していません(⇔“This AC presents one way, but not necessarily the only way”)が、大手の航空会社はこの訓練内容に自社の経験を付加するなどを行って積極的に実施しています。更に、最近ではヒューマンエラーを起こしやすい状況を模した訓練(LOFT/Line Oriented Flight Training、Threat & Error Management Training<参考-1>)なども積極的に取り入れています

(注)“Resource”の意味:通常“資源”とか“源”と翻訳しますが、ヒューマンエラー関連の文脈では、“情報源”という翻訳が一番合っていると思われます。上記CRM訓練では、“Resource”となるものは“パイロット自身の五感”、“操縦室内の各種計器の表示”、“他の乗務員からの情報”、“デスパッチャーや整備士など地上要員からの情報”、“管制官からの情報”、その他利用し得るあらゆる情報源です
従ってCRM訓練とは、「パイロットが利用し得るあらゆる情報を総合して安全運航の為の判断を行っていく」為の訓練ということになるかと思います

3.整備要員のヒューマンエラーを抑止するための訓練基準
日本においては、整備規程審査要領細則の中で「他の整備従事者及び航空機乗員との連携を含むヒューマン・パフォーマンスに関する知識及び技能について教育訓練がなされることになっていること」と規定されています。事業者はパイロットのCRM訓練と概ね同等の内容を持つMRM(Maintenance Resource Management<参考-2>)訓練を、委託先事業者を含む全整備要員に対して定期的に実施してます

米国においても、法規制全般に係るヒューマンファクターの方針(FAA Order 9550.8A)を受けて“AC 120-72”でMRM訓練で実施すべき標準的な内容を提示しおり、事業者もこの訓練を積極的に取り入れています

<参考-1> Threat & Error Management Training

運航乗務員を取り巻くスレット
パイロットを取り巻くスレット_友人から入手した資料

パイロットは常に上表の様なスレット(“threat”/安全運航にとって脅威となるもの)に晒されていますが、以下の“”を守ることによって安全な運航を実現しています;
掟1:どんなに優秀な人間でも時には最悪のエラーをおこすことがある ⇔ 進んで自身のエラーを報告する
掟2多重防御を心がける ⇔ 一人のパイロットが監視を怠ることは多重防護ができなくなることを意味する
掟3SOP(Standard Operation Procedure/一般にはマニュアルという理解でいいと思います)を遵守する ⇔ SOPを遵守することによって共通の認識ができ、エラーを容易に検知することができる
掟4コミュニケーションの活用で脅威を共有し予防策を立てる ⇔ 全ての情報を総合して、予想できる脅威を特定する
掟5PDCAのサイクルを意識する ⇔ 計画を実行し、それが状況に相応いかどうか絶えず自分に問い掛け確認する

<参考-2> MRM訓練
MRMにほぼ共通して取り入れられている“Dirty Dozen”という言葉がありますが、これは多くの事故事例を研究した結果として得られた以下の「12の事故を起こす要因」のことを意味しています。全ての整備要員は、こうしたヒューマンエラーの引き金となる要因を熟知した上で作業に当たることで、ミスのない整備を実現しています;
① コミュニケーションの不足(Lack of Communication)
② 警戒心の低下(Complacency)
③ 知識不足(Lack of Knowledge)
④ 作業の中断(Distraction)
⑤ チームワークの欠如(Lack of Teamwork)
⑥ 疲労(Fatigue)
⑦ リソースの欠如(Lack of Resource)
⑧ プレッシャー(Pressure)
⑨ 自己主張の欠如(Lack of Assertiveness)
⑩ ストレス(Stress)
⑪ 認識不足(Lack of Awareness)
⑫ 職場風土や慣習(Norms)

<参考-3> ヒューマンエラーを防止する為に規制当局、メーカー、事業者、国際機関は、以下の様に役割を分担しています
a) 規制当局の役割
①   法律、基準、等の制定;専門の統括組織の設置(Human Factors Coordinatorの設置など )
②   試験・研究の実施、支援、統制 (FAA Human Factors Research & Engineering Division /  Reportを公表しています)
③   事業者の防止体制に係る審査、認可(マネージメント、組織、訓練、規定、マニュアル類)
④   事業者に対する指針の設定(CRM/AC120-51e、MRM/ AC 120-72
⑤   中・小事業者に対するバックアップ(例: HF Operation Manual_Maintenance
⑥   事故発生後の原因の究明と対策の立案(事故調査委員会/NTSB)

b) メーカー(航空機メーカー、エンジンメーカー)の役割
① ヒューマンエラーに強い設計“Human Error Tolerant Design”、改修の実施(例:“Fool Safe Design”)
②   販売している航空機に係わる Human Error 関連情報の発信
③   ヒューマンファクターに関する試験・研究の実施、及び事業者へのフィードバック(例:MEDA_form/Maintenance Error Decision Aid;MEDA_guide)
④   事故調査委員会(NTSB)への協力

c) 事業者(航空会社、整備会社、パイロットリース会社、他)の役割
①   ヒューマンエラー防止体制の整備(マネージメント、組織、訓練、規定、マニュアル類)
②   現場要員に対する継続的な訓練の実施(CRM、MRM)
③   事故発生後の原因の究明に対する協力
④   事故、及び事故に繋がる可能性のある軽微なミスの当事者に対するインタビューの実施、及び規制当局、メーカーへの情報提供

d) 国際機関(ICAO/International Civil Aviation Organization)の役割
①   国際間の情報の共有化
②   加盟国に対する情報(ベストプラクティス)の発信

以上

7_Hardware に係る信頼性管理

-はじめに-

航空機を運用する段階で、航空機の機体やエンジン、その他の装備品などの機械装置(以下“Hardware”と呼びます)の耐空性のレベルを維持・向上させるためには、メーカー、航空会社、及び規制当局がそれぞれの役割を完璧に果たしていく必要があります
メーカー及び航空会社は、航空機の運航状況を常にモニターし、何らかのトラブルが発生した場合、航空機、エンジン、その他の装備品に対し必要な対策を自主的、且つ迅速に行える体制(“信頼性管理体制”)を取ることが義務付けられています
また規制当局は、航空会社及びメーカーの取り組み状況を常時監視すると共に、トラブルの発生状況に応じ、以下の対応を行う仕組みになっています;

事故、及び重大なインシデントが発生した場合、事故調査委員会(米国:NTSB/National Transportation Safety Board)が調査、原因究明と対策の勧告を行います。規制当局の役割は、規制当局自らに対する勧告(法改正、規制基準の変更や改修指示などの要求)があればこれを速やかに実施すると共に、メーカー、航空会社に対する勧告の実行状況を監視し適宜必要な指導を行うと共に、必要に応じAD(Airworthiness Directives/耐空性改善通報)を発行して実施を強制する義務があります
例:787就航開始直後のバッテリー火災に対する措置(耐空性改善通報・AD

日常運航において安全上重要な事象が発生した場合、メーカー、航空会社から報告( 6_認定事業場制度の「10.認定事業場の国への報告義務」の項を参照)を受けることになっており、規制当局の役割はその対策の実施状況をフォローし、必要により指導を行うことにあります

メーカー及び航空会社が行う“信頼性管理体制”については、以下に詳述致します

-メーカーが行う信頼性管理-

メーカーは Hardware の信頼性管理に係る最も重要な役割を担うことになりますが、それはメーカーが設計、製造、及び型式証明等(追加型型式証明、仕様承認)の取得に係る唯一の主体であることに起因致します。 尚、型式証明、追加型型式証明、仕様承認については、“3_耐空証明制度・型式証明制度の概要”を参照してください
何故なら;
設計、製造、型式証明取得、等を行うには Hardware の信頼性に係る膨大なデータの裏付けが必要であり、その殆どは航空機を購入した航空会社に対しても公表されません(これらのデータはメーカーの存立にかかわる知的財産になっています)。従って、Hardware に起因するトラブルを設計レベルで検証し、対策を立てることはメーカー以外ではほぼ不可能になっています
メーカーは型式証明取得に際し、CMR(Certification Maintenance Requirement)による整備要目、MSG(Maintenance Steering Group)による整備要目、等を決定する際に裏づけに必要な膨大なデータを管理しています。従って品質を維持向上させる為にこれらの要目の変更(実施内容の変更、実施期限の変更、等)あるいは新設を主導し、管理していくことはメーカー以外では実質的に不可能と思われます。尚、CMR、MSGについての詳しい説明は、“4_整備プログラム”の項を参照してください
一般に商用航空機の場合、航空機を購入する顧客は多くの国、多くの航空会社にまたがっており、型式等に固有で頻度の少ないトラブルの原因を把握するのは航空会社単独では非常に難しいと思われます。ただ、例えば1機種で100機以上保有しているような大手で、且つ技術部門の人材を多く抱えている航空会社は、トラブルの自主的な原因究明もある程度可能であり、メーカーに対して多くのデータの提供が可能となります。この結果、トラブル対応に関してメーカーへの発言権が強くなる事は当然の事と言えます

航空会社は、自社の運航中に得られた Hardware の信頼性に係る多くの情報をメーカーに対して提供しています。またメーカーは上記で述べた通り、当該型式に係る全ユーザーの信頼性に係るデータを分析し、型式固有の問題点とその解決策を迅速に提供する義務があります。この情報はSB(Service Bulletin)やSI(Service Information)というかたちで航空会社、及び当該型式機材が登録されている各国の規制当局にも日々提供されています
また、安全上重要で緊急を要する情報は“Alert SB”というかたちで提供され、規制当局は必要によりこのSBの実施を強制するAD(Airworthiness Directives/米国;耐空性改善通報/日本)を発行することになります

事故、及び重大なインシデントが発生した場合には、事故調査委員会が調査及び原因究明と対策の勧告を行うことになりますが、調査・原因究明にはメーカーに蓄積された膨大な信頼性に係る情報と、設計・製造、型式証明取得、等に係る詳細なデータが不可欠となります。また、原因究明が終わって再発防止対策を勧告する(⇒ 規制当局やメーカー、航空会社に実施を強制する)際、経済性を含めた実行可能性の検証が不可欠であり、メーカーの果たす役割はきわめて大きいという事が出来ます。一方、メーカーにとっても再発防止対策を確実に実施することで顧客に対する信頼が得られるというメリットがあり、事故調査委員会による調査、原因究明活動には極めて協力的であることが普通です。30年以上に亘るベストセラーの機種は、ある意味数多くの事故、重大なインシデントによって信頼性を向上させてきた結果であるとも言うこともできるのではないでしょうか

メーカーと航空会社が連携して行う情報収集には以下の様なものがあります;
航空機メーカーは一次構造部材の信頼性をその機種が世界のどこかで運航している限り確認し、必要な対策を講ずる義務があり、設計時に予期していなかった故障の兆しが発見された場合には予防的な改修や検査等の整備プログラムを即座に発動できるようにしておかねばなりません。こうした仕組みの代表的なものとして以下があります。その機種を運用している航空会社は収集したデータを全て航空機メーカーに送ることになっています;
*Structure Sampling Inspection Program:販売した航空機の一部(Sampling)に適用する機体構造の検査プログラム
*SSI(Significant Structure Inspection):重要構造物に対する全機体を対照にした検査プログラム

エンジンメーカーは、Redundancy(冗長性)が無く一部の破損がエンジンの全損(航空会社に大きな経済的負担を強いる結果となります)に繋がるようなディスク類(注1)、及びタービンブレード・コンプレッサーブレード類(注2)などの重要な部品について、その型式のエンジンを採用している全世界の航空会社から検査結果や整備記録を入手すると共に、型式証明取得後も続けているエンジンの耐久試験のデータと併せて、その型式のエンジンのライフタイムに亘っての信頼性管理を行っています。これらの信頼性管理の結果として、優れた型式のエンジンは使い込まれるうちに種々の改修が実施され、徐々にディスクやブレード、等の検査間隔が延長され整備負担も軽減されてゆきます。逆に設計が良くないエンジンは短期間で姿を消していく結果になります(例えばジェネラル・エレクトリック社のCJ805というエンジン:/コンベア880という飛行機に装着されていました)。
(注1)タービンブレードやコンプレッサーブレードを取付けるディスクは極めて重く、且つ高速で回転するため、破壊が起こると破片がエンジンのケースを突き破り(“Uncontained Fracture”)、燃料タンクのある翼や旅客の乗っている胴体を破壊し、深刻な事故に繋がる恐れがあります

A380・TRENTエンジンの-“Uncontained-Fracture”とタービンの破片
A380・TRENTエンジンの-“Uncontained-Fracture”とタービン・ディスクの破片

(注2)タービンやコンプレッサーのブレードが一枚欠損すると、その欠損したブレードが下流にある全てのブレードを破壊してしまいます。因みにこれらのブレードは1枚数十万円から百万円を超える高価な部品です

-航空会社が行う信頼性管理-

航空会社は、自社の運航に係る安全性経済性定時性快適性を高める為に日常の運航を通じて得られる故障情報を分析し、必要な対策を実施しています;
安全性に係る情報収集、分析、対策立案
自社の安全性に係る情報は、パイロットからのレポート(機長報告)及び日常の整備記録から得られます。これらの情報は全て品質管理部門のスクリーンを経て技術部門で検討されます。トラブルの発生頻度が高いもの、及びトラブルの安全運航に与える影響の大きいものはメーカーとのディスカッションを行い、必要な場合改修が計画・実施されます。通常安全に係る改修はメーカーから発行されるSB(Service Bulletin)、SI(Service Information)を基にして作成されます
また、メーカーは安全に係る情報を、その機種を販売した全ての航空会社から得ており、それらを基にメーカーは安全性向上の為の改修をSBまたはSIのかたちで提案を行っています。航空会社の技術部門は、これらの情報を常にウォッチし、自社に経験の無いトラブルに対しても予防的に改修等で対応できる仕組みになっています

経済性に係る情報収集、分析、対策立案
一般に航空機は極めて高額であり、出来るだけその稼動を高めることが航空会社経営の必須条件であることは言うまでもありません。航空機の稼動を高めるには、突発的な整備によって航空機が運航に供せなくなる事態を出来るだけ回避することが重要です。 “Accidental Damage”(注)の様な予測不能なトラブルを除けば、下記に様に信頼性管理を適切に行うことにより概ね管理可能な状態にすることが出来ます
エンジン及びその他の重要な装備品の故障による突発的な整備を回避する為には、個別に故障原因を特定し、改修による品質の向上、検査間隔の短縮による故障発見確率の向上、定期交換の実施、等を行うことが有効となります(→下記の“ エンジンの信頼性向上”、“エンジンの劣化監視活動”を参照)
(注)Accidental Damage:偶発的な損傷(詳しくは“4_整備プログラム”を参照してください)
機体構造や配管(油圧、気圧)類、配線類の故障による突発的な整備を回避するには、機体重整備(C整備:1回/年程度、M整備:1回/4~5年程度)の際の整備要目を適切にすること(点検を行う箇所、点検の基準、等)が有効です。
自社による故障情報の収集、分析(次項以降で述べます)のほかに、メーカーによって提供される情報(SB、SI)を検討することも重要です

一方、突発的な整備を回避する為に過剰な整備を行うことは徒に整備コストを押し上げることとなり経済性の面で得策とは言えません。従って、故障頻度の低いものは交換頻度を下げるか、又は“On Conditionによる交換”(チェックをして不具合が無ければそのまま使用を継続する)に切り替えるとともに、点検しても不具合が無いものは、その整備要目の実施間隔を延長することなどを適時、適切に行うことが必要になります。このため、航空会社では部品毎の信頼性管理と併せ、整備要目毎の故障情報の収集、分析も行っています

定時性に係る情報収集、分析、対策立案
定時性に係る指標は、旅客の航空会社選好の極めて重要な項目であるため、殆どの航空会社は主要な指標である遅延実績を記録し、その改善に取り組んでいます。通常これらの遅延記録は理由別にコード化され、それぞれ関連部門で検討され改善が行われる仕組みが作られています
遅延理由のうち“Technical Trouble”(技術的な原因によるトラブル)に分類されるもの、及び潜在的な遅延と看做される“MEL適用”(注)による修理持ち越しの情報については、品質管理部門のスクリーンを経て技術部門で検討されます。技術部門では、遅延等の原因となった部品の信頼性向上策(改修の実施、代替品の使用、整備プログラムの変更、等)、スペア部品の買い増し、等々を経済性を勘案しつつ行っています
(注)MEL(Minimum Equipment List)については、“3_耐空証明制度・型式証明制度の概要”及び“4_整備プログラム”を参照してください

快適性に係る情報収集、分析、対策立案
快適性に関しても、最近は旅客の航空会社選好の極めて重要な項目となります。この情報は、主に旅客からのクレームと客室乗務員からのレポートを基に収集し、技術部門を中心に経済性を加味しつつ改善策の検討が行われる仕組みになっています

エンジンの信頼性向上;
エンジンは交換可能な装備品の中では格段に高額(数十億円/1台)であり、且つ整備にかかるコストも航空機全体のコストの半分近くを占めます。従ってその信頼性の向上は航空会社の経営にとって常に極めて重要なテーマとなります。
エンジンの信頼性を表す最も重要な指標は、“1,000飛行時間当りの飛行中でのエンジン停止の確率です。この指標の数値を航空会社間で比較することでエンジンの信頼性管理の優劣を比較することが可能であるといっても過言ではありません。整備部門のしっかりした大手航空会社では、この数値は、0.01~0.02(5万~10万飛行時間に1回の飛行中でのエンジン停止 ⇔ 1日当り10時間飛行するとして、13年から27年に一回の飛行中でのエンジン停止)のレベルを維持しています。
この数値を高いレベルに維持するには、技術部門だけでなく整備現場も一体になった信頼性管理の取組みが必要となります。具体的には、技術部門における劣化監視活動(下記)に基づく劣化エンジンの故障前の計画的取りおろしや現業における提案活動、ヒューマンエラー防止活動、などの取り組みです
また、この数値が一定以上の水準にない場合、最新の双発機による長距離洋上飛行(3エンジン、4エンジンの航空機よりも経済性に優れています)が出来なくなり、経営上の不利を蒙る事になります

(参考)長距離洋上飛行ETOPS/Extended Range Twin Engine Operation):双発機で洋上飛行を行う場合、非常事態(例えば1台のエンジンが故障で停止するなど)を想定して、航路上に目的空港以外の代替飛行場を準備しなければなりませんが、予定航路からこの代替飛行場までの飛行時間の制限を通常の1時間から緩和することを言います。これが認められれば、結果として双発機が最短距離の航路を飛行することが可能となり、飛行時間の短縮と燃料の節約が実現できます。現在、品質管理活動の優れた大手航空会社では代替飛行場までの飛行時間を4時間まで延長させており、殆どの洋上の長距離路線で大圏コース(最短距離の航路)の飛行が可能となっています。勿論、この方式による洋上飛行を行うには規制当局による厳しい審査と認可が必要になることは言うまでもありません。詳しくは“ETOPS承認審査基準の要旨”を参照してください

エンジン劣化監視活動;
一般にエンジンの劣化状態は以下の指標を常時モニタリングすることによって把握可能です;
① エンジンの運航中の各種パラメーターの監視振動強度(低圧コンプレッサー部分、高圧コンプレッサー部分)、エンジンオイルの圧力・温度、ローターの回転数、排気ガス温度
② SOAP(Spectrometric Oil Analysis Program)の実施:高速回転体であるエンジンは、ベアリングの磨耗が上記の指標に大きく影響します。この摩耗の程度を把握する為、適切な間隔でエンジンオイルのサンプル採取を行い、オイルに含まれている金属の成分、量を分析します
③ Bore Scope Inspectionの実施タービンやコンプレッサーのブレードの損傷状況を破壊に至る前に把握するため、内視鏡(Bore Scope)を使った直接検査が定期的に行われています。またパイロットから鳥の衝突等の報告があった場合には次の飛行前に損傷の有無の検査を行うことになっています

Bore Scope Inspection
Bore Scope Inspection

④ エンジン分解検査時の検査データの活用:損傷状況(熱変形、磨耗、亀裂、等)の把握を行っています

エンジン以外の装備品の信頼性向上;
エンジン以外の装備品は極めて種類が多く(油圧機器気圧機器電装機器Avionics機器計器類、等々)、またメーカーも多岐に亘っており、自社で整備を実施するよりは、品目ごとのメーカーへの委託が一般化してきています。装備品の信頼性管理体制は概略以下の通りとなっています;
装備品の信頼性を表す最も重要な指標は“MTBF(Mean Time between Failure/装備品の故障取降しまでの平均飛行時間)”です
この指標の数値は航空会社間で大きな違いが出ることが多いと言われています。また、殆どの装備品は“On Condition”(チェックをして不具合が無ければそのまま使用を継続する)で整備、取り卸しが行われているため、この指標の数値が小さい(つまり度々故障取降しが行われる)と、スペアのレベルを上げる必要があり航空会社の財務負担が大きくなります

初期故障に対する対応
一般に、新設計や設計変更のあった装備品は初期故障が必ずといっていいほど発生します。新機種を他航空会社に先駆けて導入すると、装備品の数多くは新設計か在来機種の装備品の設計変更のものであり、就航直後から暫くの間トラブルに悩まされます(787のバッテリー火災は従来機種のニッケルカドミウム電池から、性能の良いリチウムイオン電池の変えたことによる初期故障です)。また最近は装備品に組み込まれているソフトウェアのバグによる初期故障にも悩まされます。 装備品の初期故障への対策は、主としてメーカーからのSBに基づく改修になります。装備品の改修を行う場合には、スペアを購入(但し、メーカーに相当の瑕疵がある場合に限ってスペアを一時的に貸与してもらうこともある)し、順次航空機から取り降ろして改修作業を行うことになりますが、スペアのレベルを上げた後、品質向上による取り卸し減で過剰在庫を抱える結果となることもあります

整備士の熟練度、ミス性向に対する対応
初期故障が収束した後に残る航空会社間のMTBFの違いは、整備士の熟練度、ミス性向が原因であることが多いと考えられます。修理を委託している装備品については、委託先の品質審査を厳格に行い、必要に応じ指導を行いますが、それでも改善されない場合は委託先変更を行うか、自社整備に切り替えることが検討されます。
自社整備は信頼性向上の切札となり得ますが、整備士の人件費、教育・訓練費、等の負担、施設・設備投資の負担が発生するため、最近は MTBF値 が高く故障台数が多い為、スペア部品の財務負担が重い場合、あるいは受託が期待できる場合以外は選択されない傾向となっています。更に最近は、修理方法の“ブラックボックス化”(修理方法の開示がないか、修理に関わるライセンス料が発生する)や修理完了後の最終検査に必要となる試験装置が高額化してきた為にこの傾向に拍車がかかっています

以上

冬野菜の収穫

前回の投稿では、9~10月の悪天候の影響で、冬野菜の種蒔き、苗の育成、植え付けが大幅に遅れ、セロリ、ネギを除く収穫が期待できない事態になってしまった事をご報告しました。11月に入って、あまり効果は期待できぬと承知しつつ、不織布や透明ごみ袋を使った保温措置を行って来ましたが、12月に入って幸運にもやや暖かい日が続き、生育は十分ではないものの上の写真にある様に食べられる程度にまで回復してきました。昨日初めて収穫した白菜は下の写真の通りです;

収穫した白菜
収穫した白菜

冬の鍋や生野菜サラダに使う野菜として、拙宅では寒さに強い水菜を優先的に栽培していますが、この野菜は9~10月の悪天候の影響は少なく、12月に入ってから必要に応じて収穫しています。今年は白菜の保温処置を実施するついでに、この水菜にも一部保温措置を実施し、従来通り保温しないものと比較してみました;

水菜・保温と非保温の比較
水菜・保温と非保温の比較

水菜は寒さに強いといっても、やはり保温した方が生育がいいことが分かります。また、保温しないと葉の先端がやや黄色に変色するという違いがある事が分かりました

鍋の野菜として欠かせないものの一つに春菊がありますが、これも下の写真でわかる様に透明ゴミ袋による保温で立派に生育しました;

ゴミ袋で保温した春菊
ゴミ袋で保温した春菊

冬の漬物、サラダ、煮物などで欠かせない大根については、9月に種まきができたものもありますが、大半が10月下旬にずれ込んでしまいました。一部透明ゴミ袋による保温も試みましたが、生育の面では大きな改善は得られませんでした。昨日9月に種まきした大根を収穫いたしました;

大根
大根

生育の遅れた大根は、今後葉っぱも含めて3月まで有効活用したいと思います;

大根の生育状況
大根の生育状況

冬になると一層美味しくなるほうれん草も9~10月の天候不順の影響を受けましたが、これも透明ゴミ袋による保温で種まき時期の遅れをある程度取り戻すことができました;

ホウレン草
ホウレン草

拙宅の冬野菜で最も重要なネギの栽培については、前のブログでも述べましたように9~10月の天候不順の影響は余り受けませんでした。
一方、ネギ栽培に関わるこの一年の私の課題は、普通サイズのコンテナを使って、如何に白い軸の部分を長くすることができるかということでした。その為に最初に試みた方法は、下の写真の様に牛乳パックとガムテ―プを使ってコンテナの実質的な高さを確保し、軸が伸びるにのに応じてこの中に栽培用土を追加していく方法です;

ネギ栽培法_牛乳パック&ガムテープ
ネギ栽培法_牛乳パック&ガムテープ

この方法で、そこそこうまくいったのですが、なんといってもガムテープの継ぎ足しが面倒くさいのと、栽培用土を追加していく内にテープが伸びてだらしなく膨らむことでした。
そこで、以下の様なポリカーボネートの板を加工した補助器具を自作してみました;

ネギ栽培用補助器具
ネギ栽培用補助器具

ネギがある程度成長した後、コンテナの上にこの補助器具を被せ、ネギの成長に合わせて栽培用土を追加してゆくことになります。この補助器具は透明なので成長途中に日射を十分に確保できることがミソです。この器具を使った11月下旬における生育状況は下の写真の通りです;

ネギの栽培状況
ネギの栽培状況

下の写真は、昨日収穫したネギ(コンテナ1ヶ分)ですが、ほぼ所期の目標は達成できたと思っています;

収穫したネギ
収穫したネギ

また前回のブログで紹介しましたが、サラダ用のレタス類は、居間のベランダ(高い室温)で LED による夜間の補助灯で促成栽培しておりますが、生育は問題ないものの春野菜の最強の害虫であるアブラムシがつき困っております。この害虫をなんとかしないと屋上で保温育成中のレタスの苗を居間のベランダに持ってくることができません!どうしたものか、、、

保温育成中のレタスの苗
保温育成中のレタスの苗

尚、以下の野菜類は、放っておいても健気!に育っています;

野沢菜・セロリ・パセリ・イタリアンパセリ
野沢菜・セロリ・パセリ・イタリアンパセリ

最後に、屋上野菜栽培の宿命である鳥害について一言、キャベツとチンゲンサイは鳥が大好きの様です;

鳥による食害_キャベツ・チンゲンサイ
鳥による食害_キャベツ・チンゲンサイ

以上