② FCV(Fuel Cell Vehicle):水素と空気中の酸素を反応させて直接電気を作る燃料電池(Fuel Cell)をエネルギー源とする電動自動車のことで、既にトヨタとホンダから市販されています(私のブログ「電動航空機の夜明け」でも簡単な説明を行っています)が、現時点では高価なので普及には時間がかかりそうです
③ メタネーション、合成ガス:メタネーションとは、CO2と水素から「メタン」を合成する技術です。これによりエネルギー源として現在天然ガス(約90%がメタン)を使っている民生用のガスを含めカーボンニュートラル(排出される炭酸ガスと吸収する炭酸ガスを同じ量にする)が実現できます。その他の合成燃料を含め、詳しくは資源エネルギー庁のサイトをご覧ください
Follow_Up:2022年4月・排ガス・下水からエコ燃料
Follow_Up:2022年4月・東京ガス、合成メタンを製造
③ 高速増殖炉
高速増殖炉(FBR:Fast Breeder Reactor)とは、発電しながら消費した以上の燃料を生成できる原子炉です。高速増殖炉の炉心の周辺は劣化ウランなどで囲み、この劣化ウラン中のウラン238が中性子を取り込み、プルトニウム239に変わり燃料となります。高速増殖炉は、高速中性子をそのまま利用するもので減速材は使用しません。冷却材には中性子を減速・吸収しにくいナトリウムを使用し、原子炉で発生した熱で水を蒸気に変えタービンを回して発電します(電気事業連合会のサイトより)
④ 核融合炉
核融合反応とは、太陽のエネルギーの源であり水素爆弾のエネルギーの源です。これまでの原子炉や原子爆弾のエネルギーがウラニウムやプルトニウムという原子量の大きな原子核が分裂する時の質量欠損がエネルギーに変る(発生エネルギー=質量欠損 x 光の速度の2乗)のに対し、核融合反応は水素やヘリウムといった原子量の小さな原子核が融合する時の質量欠損がエネルギーに変る反応です取り出せるエネルギーが膨大であることと併せ、核融合反応は核分裂反応と違って燃料不足になると核反応が止まるため比較的制御しやすいと言われています。また、反応により設備の一部が低レベルの放射性物質に変わるものの、敷地内などで数十年保管すれば放射能レベルが低下し原子炉材料として再利用できなど、有害な核廃棄物が非常に少ないという事が「夢のエネルギー」と言われる所以です核融合反応を起こさせるには、1億度以上の高温で原子核同士がぶつかり合うプラズマ状態にしなければなりません。このプラズマを炉の中に閉じ込めるには極めて強力な磁場が必要です。従って、核融合炉の開発には膨大な費用と長期間の取り組み、人類の英知の結集が必要なため国際協調のもとで開発が進められています。この炉の大きさをイメージするには、下の画像右下の「人の大きさ」と比較してみて下さい
今後、日本は前述の通り急速に水素社会に移行することは間違いないと思いますが、再生エネルギーによる自前のグリーン水素を我が国で製造することには限界があり、海外からのブルー水素、グリーン水素を調達することになり、福島原子力事故以降続いているエネルギーの海外依存状態からは抜け出せません。悲惨な先の大戦が、米国による石油禁輸がきっかけの一つとなったことを考えれば、子供や孫の時代までこのエネルギーの過度な海外依存は続けるべきではなく、出来る限り早期にエネルギー自給に向けて政策の舵を切らなければならないと私は考えています 参考;
① JERA・火力発電9基廃止_老朽化で採算合わず
② 三菱重工・原発を十数分で出力制御
原発反対している方々の顰蹙を買うことを承知の上で、近い将来の水素化社会に向けて、原発に関わる政策は以下のシナリオで進むことが現実的であると思います; ① 新規制基準に合格している原発の運転再開 ② 建設中の原発の工事再開、及び新規制基準による検査が終了していない原発の検査を急ぎ、合格した原発から順次運転を再開する ③ 新しい「小型原発」の導入 ⇒ 古い原発から順に廃炉させる ④ 高温ガス炉の建設 ⇒ グリーン水素の大量生産 ⑤ 高速増殖炉の建設 ⇒ 使用済み燃料からのプルトニウム製造 ⇒ 自前のMOX燃料の生産拡大(⇔原発燃料の国産化;核廃棄物の削減) ⑥ 核融合炉の建設(恐らく従来の核分裂型の原子炉は核融合炉に切り替わっていくと思われますが、早くて孫の存命中に実現するかどうか、、、)
また、真珠湾攻撃をする前に米国への宣戦布告をしなかった事は、極めて大きな判断の誤りだったと言わざるを得ません。ワシントンの日本大使館員の怠慢により宣戦布告が遅れたと言われていますが、真実はどうやら日本海軍が米国太平洋艦隊を極度に恐れていた為に、宣戦布告のタイミングを攻撃開始直前に設定したことが真の原因であると私は思います。でなければ、南雲忠一司令官が、米海軍空母軍の索敵を行って攻撃を行うべきだったにも拘らず、真珠湾攻撃が成功裏に終わると直ぐに反転して帰路についたことでも想像がつきます。正に半年後のミッドウェイ海戦では、この南雲忠一司令官率いる日本海軍の相手がこの米海軍空母軍だったのですから、、、
「宣戦布告」前の奇襲攻撃により、「Remember Pearl Harbor」という合言葉が生まれ、米軍の士気を大いに鼓舞したことは疑いなく、米軍にとっても苛烈な西太平洋の上陸作戦を実行することができたのだと思います
*1939年3月、ドイツは当時ヨーロッパ随一の工業国だったチェコを併合した
*1939年8月、独ソ不可侵条約締結。同年9月1日、ドイツ軍はポーランド侵攻開始(ソ連も9月17日にポーランドへの侵攻を開始した)
*チェンバレン首相は議会で、「9月13日までにポーランド侵略を停止しなければ、英仏両国はドイツに宣戦布告する」と演説。宣戦布告はしたものの、ドイツと英仏間の戦闘はこの後7ヶ月間発生しなかった *1940年4月、ノルウェーを巡って英独間に壮絶な海戦(北岬沖海戦/Battle of North Cape)が発生し、双方に相当の被害が出たものの勝敗の決着はつかなかった *1940年5月11日、ドイツ軍は突如としてオランダ、ベルギーの国境を突破して電撃的な攻撃を開始。二日後にチェンバレン首相は辞任し、チャーチルが首相に就任した。彼はヒトラーとの戦いを貫徹する決意を述べ、最後に「私が国民に提供できるのは血と苦しみと涙と汗だけである」と述べると、万雷の拍手が沸き起こり、議場は大歓声に包まれた 重光と共に加瀬も議場内の外交団席でこの演説を聞き、二人とも国難に際しても怯むことなく雄々しく立ち向かうイギリス国民の民族性の真髄に触れた思いがしたそうである
2018年10月29日午前6時20分、ジャカルタ郊外のスカルノ・ハッタ空港を離陸したB737MAX(2018年8月受領)は、離陸後約10分で消息を絶ちジャカルタ北部の海上に墜落、乗員・乗客189名全員が死亡しました。墜落付近の海域で、Flight Data Recorder(パイロットによる航空機の操作や機体の位置、気圧高度、速度、など機体の運動状態、その他多くのデータを記録しています) と Cockpit Voice Recorder(操縦室内の会話を記録しています)が回収されています。インドネシア航空当局から、「①Flight Data Recorder からの情報で機体のAOA(迎え角:以下 AOAと表記します;Angle of Attack)センサーのデータが左右で20度食い違っていたこと、②副操縦士から管制官に飛行高度を確認するように要請があり、飛行制御に問題があるとの報告があったこと」が発表されています
AOA(迎え角)とは・センサーの位置
2.エチオピア航空302便墜落事故;
エチオピア航空機と事故現場
2019年3月10日午前8時38分、アジスアベバのボレ国際空港を離陸したB737MAX(2018年11月受領)は約6分後に墜落し、乗員・乗客157名全員が死亡しました。墜落機のパイロットは、墜落数分前に管制官に対して運航上のトラブルを報告し、空港に引き返す許可を求めていました。墜落現場付近で、Flight Data Recorder と Cockpit Voice Recorder が回収されており、エチオピア航空当局からの依頼でフランスが解析を実施しています
事故機の飛行記録から事故原因を推定する
両事故機の対地速度と上昇・沈下速度の比較
上表は、ライオンエアの事故については、回収されたFlight Data Recorder から得られたデータを使用していますが、右のエチオピア航空の事故については、ADS-B(下記”参考1”参照)というシステムから得られるデータを使用しています。尚、上表で比較を行う場合、縦軸のスケールが違うことに注意してください
上表で明らかなように、墜落前の両機の飛行状況は非常に似通っています。また離陸直後の速度が低い状況下で短周期で上昇・沈下を繰り返しており、極めて不安定な飛行状態であったことが分かります
1.Flight Data Recorder、Voice Recorder の解析を担当しているエチオピア航空当局(ボーイング社、FAA/連邦航空局、NTSB/連邦事故調査委員会、EUの航空当局、フランスの航空当局も協力して事故調査を行っています)は、事故機のパイロットはボーイング社のマニュアル通りの操作を行っていたと述べています(⇔この件は、ボーイング社による事故の賠償金額に大きく影響するはず)
“MRJ”の最大のセールスポイントは、その高い経済性にありますが、これは ① プラットアンドホイットニー社が新しく開発した燃費の良い新型エンジンを装備していること、② 日本の得意分野であるCFRP(炭素繊維複合材料)をふんだん使った軽量化を行うこと、などによって実現しようとしています
現在開発している機種は、76席の“MRJ70”と90席の“MRJ90”です。この2機種に加え、近い将来100席の“MRJ100”の開発も視野に入れています
4.3回目の遅延:2013年
2013年には、型式証明を取得するのに必要となる新しい組織監視の仕組みである“ODA/Organization Delegation Authorityを導入するために1年の遅延が必要になった”と発表致しました。ただ、この発表のタイミングはやや奇異なことでした。何故ならODA導入の義務化については2009年に既に公となっており、本来なら2012年の遅延に反映されているべきものだったからです
私は、“ODA”の仕組みについて詳しくはありませんが、考え方としては、規制当局が人的なリソースに限界があるために規制作業の一部(と言っても業務量の90%程度:“FAA’s ODA Program Announcement Lette”)を被験者に行わせ、且つ責任を持たせる仕組みであり、パイロットの技量管理の仕組みや認定事業場の仕組みなど(“2_航空機の安全運航を守る仕組み_全体像”)にも取り入れられています。“ODA”の仕組みを全体として俯瞰してみたい方は“ODAに係るルール_Order 8100-15”の目次だけでもざっとご覧いただくことをお勧めします。このルールに適合させることがいかに大変か分かるのではないでしょうか
また、技術的に高度な製品を生み出す企業は、国境を超えた “Supply Chain(連鎖的な供給体制:必要なタイミングで必要な部品を供給する仕組み、例えばトヨタの“かんばん方式”など)”を築くことが一般的となり、結果として末端の部品供給を担う企業に対しても高度なレベルの品質管理を導入する必要性に迫られました。こうした環境の中で生まれたのが“ISO(International Organization for Standardization:国際標準化機構)”という組織です。ISOでは国際的に共通な基準を設定すると共に、この基準を満たしているかどうかを認証する中立的な専門機関を設ける仕組を構築しました。そして部品供給を担う企業に対しても、ISOの認証を受けることを求める様になりました。
ISOが要求する基準とは、極言すれば“業務を行う為のルールの可視化”、“PDCA(Plan Do Check Action)サイクルの徹底”、“記録の保持”であるということができます。航空ビジネスの分野でも、国際分業が定着した航空機、エンジン、その他の装備品の製造の受託を行う為には、ISOの認証(ISO9000)を受けることが必須となっています。また、航空機の保守整備の分野に関しても、基準やマニュアルの整備が急速に進み、ISO基準と実質的に同等な業務の仕組みが無ければ自律的で効率的な業務が実施できない状況になっています(“6_認定事業場制度”参照)
1.パイロットのヒューマンエラーを抑止する為の操縦室設計に係る基準
操縦室の設計に関するヒューマンエラーを防止する為の基準は航空法施行規則・附属書に具体的に規定されています
先行する米国においては法規制全般に係るヒューマンファクターの方針(FAA Order 9550.8A)を受け、極めて具体的、且つ詳細にわたるガイド“Human Factors Design Guide”が設定されています。また同時に、米軍の規格(MILSTD1472F)も並行して存在しており、米国での航空機の設計・製造の審査の際はこれらの基準が厳格に適用されています。また、外国製の航空機に米国の耐空証明を付与する場合でもこの基準が適用されており、日本の民間航空機の設計・製造に当たっては、欧米先進国への輸出を前提とする場合、実質的に世界で最も厳しい米国の基準がデファクトスタンダードとなっています
2.パイロットのヒューマンエラーを抑止するための訓練基準
航空分野において日米欧は、ほぼ“CRM/Crew Resource(注) Management”訓練に統一されています。パイロットとしての資格取得や資格維持の為の必須要件としてこのCRM訓練が規制の中に明確に位置付けられています
米国の規制では、CRM訓練で実施すべき標準的な内容を“AC120-51e”で提示しておりますが、この通り実施する義務は課していません(⇔“This AC presents one way, but not necessarily the only way”)が、大手の航空会社はこの訓練内容に自社の経験を付加するなどを行って積極的に実施しています。更に、最近ではヒューマンエラーを起こしやすい状況を模した訓練(LOFT/Line Oriented Flight Training、Threat & Error Management Training<参考-1>)なども積極的に取り入れています
<参考-2> MRM訓練
MRMにほぼ共通して取り入れられている“Dirty Dozen”という言葉がありますが、これは多くの事故事例を研究した結果として得られた以下の「12の事故を起こす要因」のことを意味しています。全ての整備要員は、こうしたヒューマンエラーの引き金となる要因を熟知した上で作業に当たることで、ミスのない整備を実現しています;
① コミュニケーションの不足(Lack of Communication)
② 警戒心の低下(Complacency)
③ 知識不足(Lack of Knowledge)
④ 作業の中断(Distraction)
⑤ チームワークの欠如(Lack of Teamwork)
⑥ 疲労(Fatigue)
⑦ リソースの欠如(Lack of Resource)
⑧ プレッシャー(Pressure)
⑨ 自己主張の欠如(Lack of Assertiveness)
⑩ ストレス(Stress)
⑪ 認識不足(Lack of Awareness)
⑫ 職場風土や慣習(Norms)
<参考-3> ヒューマンエラーを防止する為に規制当局、メーカー、事業者、国際機関は、以下の様に役割を分担しています; a) 規制当局の役割
① 法律、基準、等の制定;専門の統括組織の設置(Human Factors Coordinatorの設置など )
② 試験・研究の実施、支援、統制 (FAA Human Factors Research & Engineering Division / Reportを公表しています)
③ 事業者の防止体制に係る審査、認可(マネージメント、組織、訓練、規定、マニュアル類)
④ 事業者に対する指針の設定(CRM/AC120-51e、MRM/ AC 120-72)
⑤ 中・小事業者に対するバックアップ(例: HF Operation Manual_Maintenance)
⑥ 事故発生後の原因の究明と対策の立案(事故調査委員会/NTSB)
b) メーカー(航空機メーカー、エンジンメーカー)の役割
① ヒューマンエラーに強い設計“Human Error Tolerant Design”、改修の実施(例:“Fool Safe Design”)
② 販売している航空機に係わる Human Error 関連情報の発信
③ ヒューマンファクターに関する試験・研究の実施、及び事業者へのフィードバック(例:MEDA_form/Maintenance Error Decision Aid;MEDA_guide)
④ 事故調査委員会(NTSB)への協力
c) 事業者(航空会社、整備会社、パイロットリース会社、他)の役割
① ヒューマンエラー防止体制の整備(マネージメント、組織、訓練、規定、マニュアル類)
② 現場要員に対する継続的な訓練の実施(CRM、MRM)
③ 事故発生後の原因の究明に対する協力
④ 事故、及び事故に繋がる可能性のある軽微なミスの当事者に対するインタビューの実施、及び規制当局、メーカーへの情報提供
d)国際機関(ICAO/International Civil Aviation Organization)の役割
① 国際間の情報の共有化
② 加盟国に対する情報(ベストプラクティス)の発信
(参考)長距離洋上飛行(ETOPS/Extended Range Twin Engine Operation):双発機で洋上飛行を行う場合、非常事態(例えば1台のエンジンが故障で停止するなど)を想定して、航路上に目的空港以外の代替飛行場を準備しなければなりませんが、予定航路からこの代替飛行場までの飛行時間の制限を通常の1時間から緩和することを言います。これが認められれば、結果として双発機が最短距離の航路を飛行することが可能となり、飛行時間の短縮と燃料の節約が実現できます。現在、品質管理活動の優れた大手航空会社では代替飛行場までの飛行時間を4時間まで延長させており、殆どの洋上の長距離路線で大圏コース(最短距離の航路)の飛行が可能となっています。勿論、この方式による洋上飛行を行うには規制当局による厳しい審査と認可が必要になることは言うまでもありません。詳しくは“ETOPS承認審査基準の要旨”を参照してください
エンジン劣化監視活動;
一般にエンジンの劣化状態は以下の指標を常時モニタリングすることによって把握可能です; ① エンジンの運航中の各種パラメーターの監視:振動強度(低圧コンプレッサー部分、高圧コンプレッサー部分)、エンジンオイルの圧力・温度、ローターの回転数、排気ガス温度 ② SOAP(Spectrometric Oil Analysis Program)の実施:高速回転体であるエンジンは、ベアリングの磨耗が上記の指標に大きく影響します。この摩耗の程度を把握する為、適切な間隔でエンジンオイルのサンプル採取を行い、オイルに含まれている金属の成分、量を分析します ③ Bore Scope Inspectionの実施:タービンやコンプレッサーのブレードの損傷状況を破壊に至る前に把握するため、内視鏡(Bore Scope)を使った直接検査が定期的に行われています。またパイロットから鳥の衝突等の報告があった場合には次の飛行前に損傷の有無の検査を行うことになっています
Bore Scope Inspection
④ エンジン分解検査時の検査データの活用:損傷状況(熱変形、磨耗、亀裂、等)の把握を行っています
エンジン以外の装備品の信頼性向上;
エンジン以外の装備品は極めて種類が多く(油圧機器、気圧機器、電装機器、Avionics機器、計器類、等々)、またメーカーも多岐に亘っており、自社で整備を実施するよりは、品目ごとのメーカーへの委託が一般化してきています。装備品の信頼性管理体制は概略以下の通りとなっています; ① 装備品の信頼性を表す最も重要な指標は“MTBF(Mean Time between Failure/装備品の故障取降しまでの平均飛行時間)”です
この指標の数値は航空会社間で大きな違いが出ることが多いと言われています。また、殆どの装備品は“On Condition”(チェックをして不具合が無ければそのまま使用を継続する)で整備、取り卸しが行われているため、この指標の数値が小さい(つまり度々故障取降しが行われる)と、スペアのレベルを上げる必要があり航空会社の財務負担が大きくなります
パリ協定の内容は概略以下の通りとなっています;
① 目標:産業革命前からの気温情報を2℃よりも十分低く抑える(努力目標は1.5℃以内)
② 21世紀後半に人為的な温暖化ガスの排出量と森林などの吸収量を均衡させる
③ 全ての国に温暖化ガスの削減目標の作成と国連への提出、5年毎の見直しを義務付けると共に、世界全体で進捗を5年毎に検証する
④ 被害を軽減させる為に世界全体の目標を設定する
⑤ 先進国には途上国への資金の拠出を義務付けると共に、それ以外の国には自主的な拠出を推奨する
⑥ 日本はEUや、島嶼国、アフリカなど約百ヶ国からなる「野心連合」に加わりました。同連合は産業革命前からの気温上昇を1.5℃以内に抑えることを協定に盛り込むよう働きかけました
4.確認主任者の配置 ㋑確認主任者選任基準(必要な資格及び業務経験年数)
下記a)~e)または国土交通大臣が同等と認めた者(防衛大学卒業者、または外国の大学卒業者、理学部卒業者、等は、業務規定で定めた同等認定を受けるための教育・訓練を受けた者が対象);
a) 航空機及び装備品の設計検査(1-①、⑤) 資格:工学系の学卒、短大卒、高専卒 経験:学卒者/6年以上、短大卒・高専卒/8年以上
b) 航空機及び装備品の製造検査(1-②、⑥) 資格:航空又は機械学科の学卒、短大卒、高専卒 経験:学卒者/3年以上、短大卒・高専卒/5年以上
c) 航空機の整備検査(1-③) 資格:認定業務に対応した等級整備士(機種別)、航空工場整備士(作業の種類別) 経験:3年以上
d) 航空機の整備・改造(1-④) 資格:認定業務に対応した等級整備士(機種別)、航空工場整備士(作業の種類別) 経験:3年以上
e) 装備品の修理・改造(1-⑦) 資格:認定業務に対応した航空工場整備士(作業の種類別)、又は工学系の学卒、短大卒、高専卒 経験:航空工場整備士・工学系の学卒者/3年以上、短大卒・高専卒/5年以上
㋺日本国内の事業所における確認主任者選任基準;
a) 航空法規:航空法、航空法施行令、航空法施行規則、サーキュラー、等に関わる教育、訓練
b) 品質管理制度に係る教育・訓練:下記“6.品質管理制度の運用”にある各制度について教育・訓練を行う。またこれらの制度に変更があった場合は、最新の内容について周知する体制が必要となります
群れで飛ぶ鳥に対するエンジンの耐空性試験は、以下の3つのカテゴリーに分けて実際の鳥(安楽死させた!鳥を使用)を衝突させて行う; ① 小型の鳥(例:米国千鳥、北米マキバドリ)の群れ:3オンス(約85グラム)の鳥 ②中型の鳥(例:カモメ)の群れ:0.77~2.53ポンド(0.35~2.53キログラム)の重さの鳥の組み合わせ
①、及び②の試験では、エンジンの口径により細かく決められている重さと数の鳥をエンジンに打ち込み、吸い込んだ後20分間75%以上の出力を維持し安全に運航を継続できなければならない
① 補助作業者として必要な教育・訓練
各職種に配属された初級整備士は、一般整備士や作業リーダーの下で、補助作業者として実際の航空機の整備作業を実施しつつ、一般整備士として必要になる以下の様な知識・経験を習得します。こうした教育・訓練の仕方をOJT(On the Job Training)と言います;
* 作業を開始する前に、その作業の手順、必要となる部品・材料などを予めマニュアル類(AMM、POM、COM、SRM、材料シート/ 詳しくは知りたい方は“4_整備プログラム”をご覧下さい)を読み込んで実作業に備えます
* 作業リーダーの指導を受けながら実作業を実施します
* 作業終了後、疑問に思った点をマニュアル類で確認するとともに、それでもわからない点は作業リーダーに質問し実施した作業に関わる知識、経験を確実なものとします
* 通常この訓練は半年~一年程度で終了しますが、知識、経験のレベルが「一般整備士」として相応しいかどうかの判定は、その整備士の教育・訓練担当が行ないます
② 一般整備士として必要な教育・訓練
一般整備士となった整備士は、一人前の整備士として単独作業や、多人数で実施する大きな作業の一員として作業の経験を積んでいきます。また、より高度な作業をこなす為、あるいは新機種に対する知識を得るために、職種毎に専門化された技術教育を順次受けていくことになります
数年から十年程度一般整備士として知識、技能を積み上げてきた後、作業リーダー、検査員、国家資格整備士の道に進むことになりますが、これらの道は下記の様に高いハードルが設定されており、配置必要数も限定的なため、一般整備士のまま退職する人も少なからずあります